hypoelliptic polynomial - significado y definición. Qué es hypoelliptic polynomial
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es hypoelliptic polynomial - definición

Hypoelliptic; Analytically hypoelliptic; Hypoelliptic partial differential equation; Hypoellipticity; Analytic hypoelliptic; Elliptic regularity

HOMFLY polynomial         
TWO-VARIABLE KNOT POLYNOMIAL, GENERALIZING THE JONES AND ALEXANDER POLYNOMIALS
HOMFLY(PT) polynomial; HOMFLY; LYMPHTOFU polynomial; HOMFLYPT polynomial; Homfly polynomial; FLYPMOTH polynomial; HOMFLY invariant
In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e.
Polynomial transformation         
TRANSFORMATION OF A POLYNOMIAL INDUCED BY A TRANSFORMATION OF ITS ROOTS
Transforming Polynomials; Transforming polynomials; Polynomial transformations; Depressed polynomial
In mathematics, a polynomial transformation consists of computing the polynomial whose roots are a given function of the roots of a polynomial. Polynomial transformations such as Tschirnhaus transformations are often used to simplify the solution of algebraic equations.
Polynomial hierarchy         
  • PH]], and [[PSPACE]]
HIERARCHY OF COMPLEXITY CLASSES BETWEEN P AND PSPACE
Polynomial time hierarchy; Polynomial-time hierarchy; NP^NP; Sigma2p
In computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP.Arora and Barak, 2009, pp.

Wikipedia

Hypoelliptic operator

In the theory of partial differential equations, a partial differential operator P {\displaystyle P} defined on an open subset

U R n {\displaystyle U\subset {\mathbb {R} }^{n}}

is called hypoelliptic if for every distribution u {\displaystyle u} defined on an open subset V U {\displaystyle V\subset U} such that P u {\displaystyle Pu} is C {\displaystyle C^{\infty }} (smooth), u {\displaystyle u} must also be C {\displaystyle C^{\infty }} .

If this assertion holds with C {\displaystyle C^{\infty }} replaced by real-analytic, then P {\displaystyle P} is said to be analytically hypoelliptic.

Every elliptic operator with C {\displaystyle C^{\infty }} coefficients is hypoelliptic. In particular, the Laplacian is an example of a hypoelliptic operator (the Laplacian is also analytically hypoelliptic). In addition, the operator for the heat equation ( P ( u ) = u t k Δ u {\displaystyle P(u)=u_{t}-k\,\Delta u\,} )

P = t k Δ x {\displaystyle P=\partial _{t}-k\,\Delta _{x}\,}

(where k > 0 {\displaystyle k>0} ) is hypoelliptic but not elliptic. However, the operator for the wave equation ( P ( u ) = u t t c 2 Δ u {\displaystyle P(u)=u_{tt}-c^{2}\,\Delta u\,} )

P = t 2 c 2 Δ x {\displaystyle P=\partial _{t}^{2}-c^{2}\,\Delta _{x}\,}

(where c 0 {\displaystyle c\neq 0} ) is not hypoelliptic.